Math 210C Lecture 6 Notes

Daniel Raban

April 12, 2019

1 General Nullstellensatz, Pullbacks, and Krull Dimension

1.1 Nullstellensatz for Spec(R)

Let R be a commutative ring. If $T \subseteq R$, we defined $V(T) = \{\mathfrak{p} \in \operatorname{Spec}(R) : T \subseteq \mathfrak{p}\}$. If $Y \subseteq \operatorname{Spec}(R)$, we defined $I(Y) = \bigcap_{\mathfrak{p} \in Y} \mathfrak{p}$. We defined the Zariski topology on $\operatorname{Spec}(R)$, where closet sets are the V(T) or equivalently, V(I), where $I \subseteq R$ is an ideal. Note that not all points are closed in $\operatorname{Spec}(R)$, just the maximal ideals.¹

Proposition 1.1. I and V provide mutually inverse, inclusion-reversing bijections between $\{radical \ ideals \ of \ R\} \leftrightarrow \{closed \ sets \ in \ Spec(R)\}$. In fact, $I(V(\mathfrak{a})) = \sqrt{\mathfrak{a}}$ for all ideals $\mathfrak{a} \subseteq R$, and $V(I)Y) = \overline{Y}$, where Y is the Zariski closure of Y.

Proof. Note that

$$I(V(\mathfrak{a})) = \bigcap_{\mathfrak{p} \in V(\mathfrak{a})} \mathfrak{p} = \bigcap_{\mathfrak{p} \supseteq \mathfrak{a}} \mathfrak{p} = \sqrt{\mathfrak{a}}$$

where the second equality comes from the fact that in R/\mathfrak{a} , $\sqrt{0} = \bigcap_{\mathfrak{p}} \mathfrak{p} = I(V(0))$. We also have

$$V(I(Y)) = \{ \mathfrak{p} \supseteq \bigcap_{\mathfrak{q} \in Y} \mathfrak{q} \} = \{ \mathfrak{p} : \mathfrak{p} \supseteq \mathfrak{q} \text{ for some } q \in Y \} \supseteq \overline{Y}$$

Also, $V(I(Y)) \subseteq V(I(\overline{Y})) = \overline{Y}$.

Corollary 1.1. The Zariski closure of $Y \subseteq \text{Spec}(R)$ is the set of prime ideals containing some element of Y.

1.2 Pullbacks in the Zariski topology

Here is how our two notions of V and I relate.

Proposition 1.2. Let $R = K[x_1, ..., x_n]$, where K is algebraically closed. Let V' be the vanishing locus and I' be the ideal of vanishing in our original sense.

¹This topology is not even T_1 .

- 1. $\iota : \mathbb{A}_K^n \to \operatorname{Spec}(R)$ sending $(a_1, \ldots, a_n) \mapsto (x_1 a_1, \ldots, x_n a_n)$ is injective. The Zariski topology on \mathbb{A}_K^n is the subspace topology for the Zariski topology on $\operatorname{Spec}(R)$.
- 2. If $\mathfrak{a} \subseteq R$ is an ideal, then $V(\mathfrak{a}) = V(\mathfrak{a}) \cap \mathbb{A}_K^n$.
- 3. If $Y \subseteq \text{Spec}(R)$ is Zariski closed, then $I(Y) = I'(Y \cap \mathbb{A}^n_K)$.

Definition 1.1. Let $a \in R$. $U_a := \operatorname{Spec}(R) \setminus V((a))$ is called a **principal open set** in $\operatorname{Spec}(R)$.

Proposition 1.3. The U_a form a base for the Zariski topology on Spec(R).

Proof. Let $U \subseteq \operatorname{Spec}(R)$ be open. Then $U = \operatorname{Spec}(R) \setminus V(I)$, where I is an ideal. Then $V(I) = \bigcap_{a \in I} U_a$, so $U = \bigcup_{a \in I} U_a$.

Lemma 1.1. Let $\varphi : R \to S$ be a ring homomorphism.

- 1. If \mathfrak{q} is a prime ideal of S, then $\varphi^{-1}(\mathfrak{q})$ is a prime ideal of R.
- 2. Suppose that φ is surjective and \mathfrak{p} is a prime ideal of R such that $\mathfrak{p} \supseteq \ker(\varphi)$. Then $\varphi(\mathfrak{p})$ is a prime ideal.

Definition 1.2. Let $\varphi : R \to S$ be a ring homomorphism. The **pullback map** φ^* : Spec $(S) \to$ Spec(R) is $\varphi^*(\mathfrak{q}) = \varphi^{-1}(\mathfrak{q})$ for all prime $\mathfrak{q} \subseteq S$.

Lemma 1.2. φ^* is continuous.

Proof. Let $\mathfrak{a} \subseteq R$ be an ideal. Then

$$(\varphi^*)^{-1}(V(\mathfrak{a})) = \{\mathfrak{q} \in \operatorname{Spec}(S) : \varphi^{-1}(\mathfrak{q}) \supseteq \mathfrak{a}\} = V(\varphi(\mathfrak{a})).$$

Remark 1.1. $R \mapsto \operatorname{Spec}(R)$ and $\varphi \mapsto \varphi^*$ defines a contravariant functor Ring \to Top.

Example 1.1. Let $\pi : R \to F$ be a surjective ring homomorphism, where Fsi a field. $\pi^*((0)) = V(\ker(\pi)) = \{\ker(\pi)\}$, since $\ker(\pi)$ is maximal.

Example 1.2. If \mathfrak{p} is prime, let $\varphi : R \to R_{\mathfrak{p}}$ be the natural map. Then $\operatorname{Spec}(R_{\mathfrak{p}}) = {\mathfrak{q}R_{\mathfrak{p}} : \mathfrak{q} \text{ prime of } R, \mathfrak{q} \subseteq \mathfrak{p}}$. So $\varphi^*(\mathfrak{q}R_{\mathfrak{p}}) = \mathfrak{q}$.

Example 1.3. Let $\varphi : \mathbb{C}[x] \to \mathbb{C}[x]$ be $\varphi(x) = x^2$. Then $\varphi^*((0)) = (0)$, and $\varphi^*((x-a)) = \{g \in \mathbb{C}[x] : g(a^2) = 0\} = (x - a^2)$. Since $\varphi^*((x - a)) = \varphi^*((x + a))$, this is a 2 to 1 map, aside from a = 0. What does Spec($\mathbb{C}[x]$) look like? It looks like $\mathbb{C} \cup \{(0)\}$

1.3 Krull dimension

Definition 1.3. The **length** of an strictly ascending chain of distinct prime ideals $(\mathfrak{p}_i)_{i=0}^n$ of R is n.

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \mathfrak{p}_2 \subsetneq \cdots \subsetneq \mathfrak{p}_n$$

Example 1.4. Look at $R[x_1, \ldots, x_n]$, where R is a domain.

$$(0) \subsetneq (x_1) \subsetneq (x_1, x_2) \subsetneq \cdots \subsetneq (x_1, \dots, x_n)$$

has length n.

Definition 1.4. The **Krull dimension** of R is the maximum of the lengths of all chains of prime ideals in Spec(R), if finite. Otherwise, we say the Krull dimension is infinite.

Example 1.5. If R is a field and $n \ge 1$, then $F[x]/(x^n)$ has Krull dimension 0.

Example 1.6. dim $(\mathbb{Z}) = 1$. In fact, dim(R) = 1 for all PIDs.

Example 1.7. Let F be a field. $F[x_1, x_2, ...]$ has infinite Krull dimension because of the chain

$$(0) \subsetneq (x_1) \subsetneq (x_1, x_2) \subsetneq \cdots$$

Lemma 1.3. If $\pi : R \to S$ is surjective, then $\dim(R) \ge \dim(S)$.

Proposition 1.4. If R is a domain, then $\dim(R[x]) = \dim(R) + 1$.

Corollary 1.2. Let $R = F[x_1, \ldots, x_n]$, where F is a field. Then dim(R) = n.